Difference between revisions of "IMU Breakout - MPU-9250"

From Wiki
Jump to: navigation, search
(Description)
Line 2: Line 2:
 
== Description ==
 
== Description ==
 
[[File:as007 1.jpg]]
 
[[File:as007 1.jpg]]
 +
<br>
 
The MPU-9250 IMU Breakout features the 9-axis MEMS sensor. Each of these 9DoF breakouts feature an MPU-9250 with a System in Package (SiP) that combines two chips: the MPU-6500, which contains a 3-axis gyroscope as well as a 3-axis accelerometer, and the AK8963, which features a 3-axis magnetometer. This breakout has been designed to be smaller than some of our other offerings to fit in smaller projects. However, if you plan to use a breadboard, or secure the IMU board to a project with something like epoxy, the mounting holes can be easily snapped off.<br><br>
 
The MPU-9250 IMU Breakout features the 9-axis MEMS sensor. Each of these 9DoF breakouts feature an MPU-9250 with a System in Package (SiP) that combines two chips: the MPU-6500, which contains a 3-axis gyroscope as well as a 3-axis accelerometer, and the AK8963, which features a 3-axis magnetometer. This breakout has been designed to be smaller than some of our other offerings to fit in smaller projects. However, if you plan to use a breadboard, or secure the IMU board to a project with something like epoxy, the mounting holes can be easily snapped off.<br><br>
  

Revision as of 06:21, 9 April 2020

Description

As007 1.jpg
The MPU-9250 IMU Breakout features the 9-axis MEMS sensor. Each of these 9DoF breakouts feature an MPU-9250 with a System in Package (SiP) that combines two chips: the MPU-6500, which contains a 3-axis gyroscope as well as a 3-axis accelerometer, and the AK8963, which features a 3-axis magnetometer. This breakout has been designed to be smaller than some of our other offerings to fit in smaller projects. However, if you plan to use a breadboard, or secure the IMU board to a project with something like epoxy, the mounting holes can be easily snapped off.

According to InvenSense, “Gyro noise performance is 3x better, and compass full-scale range is over 4x better than competitive offerings.” The MPU-9250 uses 16-bit Analog-to-Digital Converters (ADCs) for digitizing all nine axes, making it a very stable 9 Degrees of Freedom board.

Nice sensor, right? So we made it easy for you to get right into your next project. The surface-mount sensor is soldered onto a PCB and comes with a 3.3V regulator and level shifting so you can use it with a 3V or 5V logic microcontroller without worry.

Features

  • Input Voltage: 3.3/5V
  • Communication Mode: standard IIC/SPI communication protocol (build-in 16bit AD converter chip, 16-bit data output)
  • Size: 15mm*25mm*3mm
  • Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±250, ±500, ±1,000 and ±2,000°/sec and integrated 16-bit ADCs
  • Digital-output triple-axis accelerometer with a programmable full-scale range of ±2g, ±4g, ±8g and ±16g and integrated 16-bit ADCs
  • 3-axis silicon monolithic Hall-effect magnetic sensor with magnetic concentrator
  • Digitally programmable low-pass Gyroscope filter
  • Gyroscope operating current: 3.2mA
  • Accelerometer normal operating current: 450µA
  • Magnetometer normal operating current: 280µA at 8Hz repetition rate
  • Detachable mounting holes

Package Including

  • 1 x MPU9250 Module
  • 1 x 10pin Straight Headers